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Since the limit form of the flow around a body for Re ~ ~ is unknown within the Navier- 
Stokes model, turning to a simpler model of an ideal medium is the single possibility. How- 
ever, another, directly opposite difficulty, an infinite set of solutions occurs during such 
a passage. Consequently, questions of mathematical submodelling, i.e., selection of a real 
flow scheme and its experimental verification, are of primary importance. 

It is assumed in the theory of inviscid fluid flows that the solution is piecewise-anal- 
ytical: there are slip surfaces in the domain of its existence for which vortex sheets and 
(or) free boundaries are selected in aerodynamics. Application of asymptotic methods to the 
solution of problems of discontinuous fluid and gas flows turned out to be most efficient 
within the framework of the theory of elongated separation zones by setting up the law of 
plane sections and the nonstationary analogy for the flow of a subsonic, supersonic or hyper- 
sonic flow around a body of small span T [I]. The typical form of the internal expansion, 
valid in a T-neighborhood of the elongated zones, for the potential @ (xl, Yl, zl; T) is ob- 
tained if the time t = zl/w= is introduced, where w= is the unperturbed velocity directed 
along the z~ axis and the transverse coordinates x I = ~x, Yl = ~Y are stretched 

= wit + T ~  (x, ~, t) + 0 (TD. ( 1 )  

S u b s t i t u t i n g  t h e  v e l o c i t y  components  c o r r e s p o n d i n g  t o  t h e  e x p a n s i o n  (1)  i n t o  t h e  N a v i e r -  
S t o k e s  e q u a t i o n ,  we e a s i l y  c o n c l u d e  t h a t  t h e  e x i s t e n c e  o f  an i n v i s c i d  f low mode i s  p o s s i b l e  
in the elongated zone if the following estimate is valid 

Re1= ~Re ~ t, (2 )  

where Re = w ~ 0 / v ;  v i s  t h e  k i n e t m a t i c  v i s c o s i t y  c o e f f i c i e n t ,  and s i s  t h e  c h a r a c t e r i s t i c  
zone l e n g t h .  For  t h e  e x p a n s i o n  (1)  t o  e x i s t ,  t h e  zone  e l o n g a t i o n  �9 s h o u l d  b e ' g r e a t e r  in  o r -  
de r  o f  m a g n i t u d e  t h a n  t h e  b o u n d a r y  l a y e r  t h i c k n e s s .  

Known r e s u l t s  o f  t h e  t h e o r y  o f  e l o n g a t e d  s e p a r a t i o n  and c a v i t a t i o n  zones  a r e  o b t a i n e d  
in  f low p r o b l e m s  [ 2 - 8 ] .  Examined in  t h i s  p a p e r  a r e  e f f l u x  p rob l ems  when t h e r e  i s  o v e r f l o w  
from one domain i n t o  a n o t h e r  t h r o u g h  t h e  p e r m e a b l e  p l a n e  w i t h  na r row  l o n g i t u d i n a l  s l o t s  t h a t  
s e p a r a t e s  them. In  t h i s  c a s e  t h e  R e y n o l d s  number c h a r a c t e r i z e s  t h e  d i m e n s i o n l e s s  f l o w  r a t e :  
Re 1 = q / v  (q i s  t h e  f l o w  r a t e  in  a c e r t a i n  t r a n s v e r s e  s e c t i o n  o f  t h e  z o n e ) .  The i n f l u e n c e  
o f  v i s c o s i t y  i s  f e l t  o n l y  in  t h e  n e i g h b o r h o o d  o f  t h e  s e c t i o n  where  q = 0. 

The j e t  f r o n t  in  e f f l u x  p r o b l e m s  can be n o t  o n l y  a v o r t e x  s h e e t  bu t  a l s o  a f r e e  b o u n d a r y  
and a c o n t a c t  d i s c o n t i n u i t y .  I t  i s  e a s y  t o  see  t h e  v a l i d i t y  o f  t h e  n o n s t a t i o n a r y  a n a l o g y  
even in  t h i s  c a s e :  t h e  s t a t i o n a r y  n o n p e n e t r a t i o n  c o n d i t i o n  on t h e  t a n g e n t i a l  d i s c o n t i n u i t y  
i s  c o n v e r t e d  i n t o  a n o n s t a t i o n a r y  c o n d i t i o n  i f  t h e  l o n g i t u d i n a l  c o o r d i n a t e  i s  r e p l a c e d  by 
t h e  t ime  t w h i l e  t h e  c o n d i t i o n  f o r  t h e  p r e s s u r e  on t h e  d i s c o n t i n u i t y  a l s o  becomes n o n s t a t i o n -  
a r y  s i n c e  t h e  B e r n o u l l i  e q u a t i o n  goes  o v e r  i n t o  t h e  C a u c h y - L a g r a n g e  i n t e g r a l .  

I f  i t  i s  s u f f i c i e n t  t o  i n t r o d u c e  one s m a l l  p a r a m e t e r  �9 c h a r a c t e r i z i n g  t h e  e l o n g a t i o n  
o f  t h e  s e p a r a t i o n  zone t o  a p p l y  t h e  law o f  p l a n e  s e c t i o n s  t o  f l ow p r o b l e m s ,  t h e n  i t  i s  n e c e s -  
s a r y  t o  t a k e  i n t o  a c c o u n t  t h e  p r e s e n c e  o f  s t i l l  a n o t h e r  p a r a m e t e r  r t h a t  c h a r a c t e r i z e s  t h e  
p r e s s u r e  d rop  in  t h e  zone  t r a n s v e r s e  s e c t i o n  in  e f f l u x  p r o b l e m s .  D i v e r s e  p o s s i b i l i t i e s  f o r  
a p p l y i n g  t h e  method o f  merg ing  a s y m p t o t i c  e x p a n s i o n s  a p p e a r  d e p e n d i n g  on t h e  r e l a t i o n s h i p  
be tween  �9 and E (>>, =, <<). We w i l l  c a l l  t h e  f low f o r  r = 0 ( 1 )  s t r o n g  i n t e r a c t i o n  be tween 
a gas  w i t h  p e r m e a b l e  b o u n d a r i e s  w h i l e  t h e  f low w i t h  r = o ( 1 )  i s  a weak i n t e r a c t i o n .  

C o n s i d e r e d  a r e  p rob l ems  o f  t h e  f l o w  a round  a na r row  c u t o u t  in  a s c r e e n  and on t h e  s e t -  
t i n g  up o f  b o u n d a r y  c o n d i t i o n s  on a p e r m e a b l e  w a l l  w i t h  l o n g i t u d i n a l  s l o t s  h a v i n g  t h e  p e r i o d  
2T << 1. 

Zhukovskii. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
5, pp. 126-133, September-October, 1987. Original article submitted April 4, 1986. 
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The problem of gas efflux from a cutout of small span T in a plane screen has two appli- 
cations. During operation of the rear wing mechanism the diminution in the pressure drop 
in the neighborhood of the slots being formed results in a reduction in the efficiency of 
the control surfaces by spoiling the linear dependence of their aerodynamic characteristics 
on the angle of deviation. The influence of the slots on the reduction in the lifting capac- 
ity of the wing is usually taken into account by introducing an empirical correction factor 
in the value of the total characteristics [9]. The paper [i0] is devoted to the separation- 
free flow around a rectangular cutout in a wing. The second application of the problem under 
consideration is the gas flow around a permeable boundary with longitudinal slots in the case 
of a small coefficient of permeability ~. 

Let us consider the stationary flow around a longitudinal cutout symmetric with respect 
to a certain axis 0z i is a zero-thickness plane screen by an incompressible fluid. Figure 
1 shows the triangular cutout. The origin is at the apex of the cutout, the 0y i axis is di- 
rected along the normal to the screen and the 0x i axis along the screen. The shape of the 
cutout edges has the form x i = • Quantities associated with the fluid particles pass- 
ing above and below the screen are denoted, respectively, by the superscripts + and -. These 
particles are separated by the plane of the screen and an interfacial surface resting on the 
edge of the cutout. 

The outer expansion describes the flow around the screen (wing) with multipole singular- 
ities on the segment 0 5 zi 5 s rl 2 = Xl 2 + Yi 2 = 0. The first term of the outer expansion, 
i.e., the solution of the problem in the absence of the cutout (T = 0) will be considered 
known 

lira 9 • (xi, Yi, zl; z) = ~ (zl). (3)  
r l~O 

The influence of the cutout on the flow as a whole is localized if the pressure drop 
on the screen surface is small 

k \ d Z l ] - - I T  = ePb~ (zi)" (4)  

Here  p i s  t h e  f l u i d  d e n s i t y ,  and p• i s  t h e  s t a g n a t i o n  p r e s s u r e .  

The physical meaning of the parameter ~ << I is determined by the specific conditions 
of the problem. For instance, within the framework of linear wing theory the parameter E 
will be the angle of attack. The relation between the parameters s and �9 is set up during 
merging the exterior and interior expansions. 

Condition (4) allows of different interpretations, out of which we consider the case 
when the difference between the total pressures is small (p0 + - P0- = O(s)) and the inner 
limit of the outer expansion (3) is 

lim ~• Yi, zl; T) = W~Z 1 + ~ •  O(e). 
~ o  (5) 

Let us; investigate the flow of a single-phase fluid when the tangential discontinuity 
is a vortex sheet that originates in conformity with the Chaplygin-Zhukovskii condition 
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about the finiteness of the velocity at the sharp edges of the cutout and consists of parti- 
cles passing through the edge. Firstly it is clear that the flow rate q(t) depends on the 
pressure drop on the screen determined by the quantity #-- - I +. 

The inner expansion differs from (i) by the intermediate term 

q~(xl, Yl,  z~; x) 2 - w ~ t  + ~r (t) + ~2r (xl y, t) + o (~D. 

The outer limit is 

lim r  y , t )  = §  
~ •  - -  ~ lo ( 6 )  

( r  1 = ~ r ,  s o i s  t h e  c u t o u t  l e n g t h ) .  C o m p a r i n g  t h e  l i m i t s  ( 5 )  a n d  ( 6 )  we f i n d  z = k~ 2 l n ~ ,  
2q = k ~ ( r  - r  2kr  o = r  ~ q  

The theory of elongated and separation zones is valid if the similarity parameter is 
k = O(i), for k << 1 the linear efflux theory [11] is valid, while for k >> I the problem 
remains three-dimensional. Such a formulation differs substantially from that studied in 
[12] where out-of-order terms are contained. 

The next term of the outer expansion determined by the limit • in (rl/E Q) corre- 
sponds to flow from linear sources (Yl > 0) and sinks (yl < 0) located on a segment of the 
z I axis. 

The inner expansion in the principal approximation describes the plane nonstationary 
fluid efflux from a slot of variable width 2s The method of solving this problem and 
certain solutions are presented in [ii], where the reverse vortex sheet and the cumulative 
effect of a self-similar jet are discussed. The simplest flow schemes, including the efflux 
of a compressible gas (a) are shown in Fig. 2 (i is the shockwave; 2 is the contact discon- 
tinuity; 3 is the rarefaction wave; and 4 is the vortex sheet). If the cutout has a sharp 
apex, i.e., s = 0, then the flow scheme is possible when all the fluid particles forming 
the jet front are vortices (b). If the cutout has a leading edge, i.e., s ~ 0, then the 
particles passing through it will remain nonvorticized in conformity with the Lagrange 
theorem (dashed line in Fig. 2c), the jet front has a mushroom shape with free ends of the 
vortex sheet curled up into two spirals. 

Efflux problems are characterized by a large diversity of schemes that depends sub- 
stantially on the initial data and which are not always successfully set up a priori before 
performing the numerical computations or tests. Presented in Fig. 3 is a photograph on the 
initial stage in the buildup of a stationary efflux from a constant width slot, experimental 
verification of the scheme displayed in Fig. 2c. The spiral structure of the flow is dis- 
closed upon feeding dye to the slot edge in a vertical water tunnel (Fig. 4). There is no 
second edge here, and it can be considered that the flow in a half-slot is investigated here. 
The efflux pattern is similar to a Prandtl acceleration vortex. 

The plane nonstationary problem was solved numerically for different kinds of function 
s and fluid flow rate through the slot q. Shown in Fig. 5 is the dependence of the 
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circulation growth rate of one spiral chuck of the vortex sheet F 0 on the dimensionless time 
t o = tq0s -2 for a symmetric efflux from a slot of constant width (Z = 2) for different values 
of the function q(t~ i) constant flow rate, q = 2q0; 2) linearly growing flow rate q = 

3q0 t~ . 

In the first case the flow near the slot emerges into the stationary mode (dashed line 
in Fig. 5) in conformity with the Helmholtz scheme. The numerical solution of the nonsym- 
metric problem in the presence of downwash is obtained in [13]. 

During the stationary interaction of two fluids one sets the other into motion just by 
using tangential stresses. A thin mixing layer forms on the boundary of slightly viscous 
medium that ejects a small quantity of the gas in the rest phase. Consequently, it is na- 
tural to assume that the contact surface of inviscid media is a free boundary, on which the 
pressure is constant. Such a flow scheme has important application in a study of gas flow 
interaction with permeable walls of a wind tunnel working section. 

Needed for the active control of the flow in a tube and the computation of its induction 
is knowledge of the boundary conditions resulting from the initial equations (the first prin- 
ciples of physics), and taking account of the mechanism of gas interaction with a permeable 
wall. The empirical condition @z i = ~@yiz i ordinarily utilized [14] contains out of order 

terms (the constant ~ << i) and does not take account of the separation interaction between 
the gas flow and the wall. The large series of computations executed are underrated because 
of the utilization of empirical boundary conditions. 

If the number of slots per unit width of the permeable wall section is known, then the 
boundary conditions on the wall cannot possibly be obtained, and the problem of the flow 
around a profile should be solved jointly with the problem of determining the free surface 
shape and intensity that rests on the sharp edges of the slot. Formulation of the boundary 
conditions is possible if the slot half-period T is small. In this case the periodic flow 
in the T-neighborhood of the permeable wall is equalized during emergence from this neigh- 
borhood into the working section and its certain averaged characteristics are the missing 
boundary condition for the external problem about the flow around a body in a wind tunnel. 

Let us consider permeable walls with periodic longitudinal slots of width 2T << 1. 
There is no overflow through the permeable walls in the absence of a profile in the tube, 
i.e., the pressure in the plenum chamber equals the static pressure in the unperturbed flow.* 
Then the maximal profile thickness can be selected as the parameter g that characterizes the 
pressure drop in the near-wall layer. For E = 0 there is no pressure drop. An inviscid ef- 
flux mode [15] is realized in the neighborhood of permeable walls since the estimate ET Re >> 
i, replacing condition (2), holds. 

For weak interaction ordinary linear expansions of the subsonic or supersonic theory 
of a profile @ = w~z i + e~0(yi, zi) + C2~l(Yl, Zl) + 0(~ 2 ) with nonpenetration conditions 
on the body, on the permeable wall sections of the tunnel, and with the condition of low 
homogeneity as z I + -~ are varied in the outer expansion. The desired boundary condition 
on the permeable section Yi = h (a i 5 zi ~ a 2) of the walls should be determined from the 
condition for merging with the inner expansion which is valid in a small neighborhood of the 
wall, where the outer expansion is not suitable because of the three-dimensional nature of 
the flow. The formalism of the expansion is different from that considered above in that 
the flow in the neighborhood of the permeable boundary is periodic in the transverse direc- 
tion (along the x i axis). The nonpenetration condition is satisfied on the flow domain 

*Taking account of the variable pressure in the plenum chamber, i.e., on the free surface, 
introduces no difficulties in principle. 
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boundaries, the infinite strips (-i ~ x 5 i, - ~  < y < ~) with the two slits <Ixl 
by virtue of symmetry. In place of (i) we have 

> ~J, y = 0), 

(~(x~, y~, %; ~) = w~z~ + e~@0(z~) + eT@(x, y, z0 + o(e~), (7) 

where Yl = h + Ty; h = O(i). 

Substituting (7) into the Euler equation, we find that in conformity with the theory 
of elongated separation zones the potential satisfies the Laplace equation ~Xx + ~yy = 0, 
i.e., compressibility is not essential. 

Since the longitudinal velocity perturbation in the outer expansion is larger in order 
of magnitude than the longitudinal velocity perturbation in the inner expansion, we obtain 
Nikol'skii's boundary condition [16] on the permeable wall from their merger 

a%(h, zl) = 0. (8) 
0z 1 

The e x t e r n a l  p rob lem w i t h  c o n d i t i o n  (8)  becomes l i n e a r ,  i t s  s o l u t i o n  i s  o b t a i n e d  in  
c l o s e d  form [17] and d e t e r m i n e s  t h e  v e l o c i t y  v 0 ( z  l )  = a~00(h , z l ) / a y l ,  i . e . ,  t h e  gas  f low r a t e  
t h r o u g h  t h e  s l o t  needed  as  t h e  b o u n d a r y  c o n d i t i o n  f o r  y = - ~  t o  s o l v e  t h e  i n n e r  p rob lem.  
However,  t h e  d i f f e r e n c e  o f  t h e  f l o w  in  t h e  work ing  s e c t i o n  o f  t h e  wind t u n n e l  w i t h  l o n g i t u -  
d i n a l  s l o t s  f rom t h e  f l o w  in  a f r e e  j e t  ( i n  an E i f f e l  chamber)  on whose b o u n d a r y  c o n d i t i o n  
(8)  i s  a l s o  s a t i s f i e d  b e c a u s e  o f  t h e  c o n s t a n c y  o f  t h e  p r e s s u r e  in  n o t  a p p a r e n t .  A l so  n o t  
a p p a r e n t  i s  t h e  dependence  o f  t h e  s o l u t i o n  on t h e  s l o t  g e o m e t r y  ( t h e  c o e f f i c i e n t  o f  permea-  
b i l i t y  ~, e t c . ) .  C o n s e q u e n t l y ,  t o  d e t e r m i n e  t h e  t u n n e l  i n d u c t i o n  i t  i s  n e c e s s a r y  t o  c o n s t r u c t  
t h e  n e x t  a p p r o x i m a t i o n  i n c l u d i n g  t h e  s o l u t i o n  o f  t h e  i n t e r n a l  p r o b l e m .  

I f  E << z ,  t h e n  t h e  l i n e a r  t h e o r y  o f  f r e e  b o u n d a r y  e v o l u t i o n  i s  v a l i d .  I f  ~ = O ( z ) ,  
t h e n  t h e  p rob lem rema ins  n o n l i n e a r  and ~0 = 0 can be assumed.  The o u t e r  l i m i t  

lira ~P (x, y, zl) : yv o (zl) + b (zl). ( 9 )  
y~--~ 

is determined as a result of solving the internal problem. 

The inner expansion (the function b) determines th e pressure drop needed for a given 
fluid mass flow rate to penetrate through a periodic lattice of slots, the longitudinal veloc- 
ity of the external flow is adjusted under the pressure on the wall determined in such a man- 
ner. From the merger with the limit (9) we have a boundary condition for the second approxi- 
mation of linear profile theory 

o% (h, zl) _ b' C~1). ( 1 0 )  
Oz I 

Therefore, the problem of the flow around a profile in a channel with longitudinal slots 
reduces to two plane problems: a linear stationary problem for the flow around a profile 
by a compressible gas, and a nonlinear nonstationary problem for incompressible fluid flow 
around a lattice of slots. A typical nonstationary efflux diagram is shown in Fig. 6, where 
the jet front is the free boundary. 

i , ,  I I i 
a I ~ I I 

; / I  ', /11 ', / I  
I I ~ ' 1 1 ~  , / \ I , 

' l o  1 t ' t ~  I 
I b t I 

I I I 1 

T -i I I 
Fig. 6 
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Let us still consider two cases when the separation zone is flattened and the nonsta- 
tionary analogy is inapplicable. If T << E << i, then in contrast to the diagram displayed 
in Fig. 6a, the jet front in the scale of the inner expansion leaves for infinity since it 
has the length O(E) exceeding the characteristic thickness of the near-wall layer 0(~). The 
flow is stationary, and the longitudinal coordinate, rather than the time, plays the part 
of the parameter. In a first approximation condition (8) is again valid. Considering the 
coefficient of fluid jet compression o a given function of ~ and utilizing the Bernoulli 
equation t o  determine the pressure in the jet for y = ~, we obtain in a second approximation 

az : 2o2p~ 

Condition (ii) is linear since its right side is considered a given function of z I in the 
determination of the second approximation (the potential @I). Therefore, in the weak inter- 
action case, the theory of small perturbations results in a natural manner in linear bound- 
ary conditions, and attempts to deduce nonlinear boundary conditions (see [16], Ch. V, say) 
should be acknowledged inconsistent. Condition (ii) is valid only on the section of the flow 
out of the working section into the plenum chamber, whose end is determined from a~/ay I = 0 
for Yl = h. The flow diagram changes substantially at the inflow section (Figs. 6b and c) 
while the dependence on x vanishes in the intermediate layer Yl = h + O(g). Therefore the 
flow can be considered planar. The boundary condition for the exterior problem is constancy 
of the pressure and the stream function on the unknown free boundary located in the working 
section. 

In the case of a strong interaction, which is of especial interest for practice in con- 
nection with a marked tendency to increase the Re in wind tunnels, T remains the single small 
parameter. The external problem is nonlinear. The inner expansion (7) is rewritten in the 
form 

~(xl, Yl, zl; ~) = ~o(Zl) -~- T~(x, y, zl) -~- o(~). (12)  

All the velocity components in (12) are identical in order of magnitude. The longitudinal 
velocity component ~0' is independent of the transverse coordinates. Substituting (12) into 
the three-dimensional equations of motion of a perfect gas with adiabatic index y we find 
the equation of the plane sections 

= 4- i + + (13) 

which describes, with the appropriate boundary conditions, the stationary symmetric jet gas 
flow around a lattice of slots in the plane z I = const. The sound speed at the flow stagna- 
tion point depends on the longitudinal coordinate z I which also plays the part of a parameter 
here. The boundary condition is nonlinear, is obtained as a result of merging the inner ex- 
pansion (12) with the exterior describing the flow in the Yl, zl plane. To do this it is 
sufficient to know the jet compression coefficient o and to use the isoentropicity condition 
and the Bernoulli equation in order to determine the pressure Pl in the jet as y + ~, which 
equals the given pressure in the plenum chamber 

a=~ o~F --: L P~ J L ay ?~iL i- J (14) 

(p0 is the stagnation pressure). Condition (14) is valid only on the outflow section. In 
the general case the outer flow will be three-dimensional, periodic along the x I axis, in the 
inflow section. 

Therefore, depending on the relationship between the parameters s and �9 the application 
of asymptotic methods to the problem of gas flow in a wind tunnel with longitudinally slotted 
walls is possible in four cases. For a strong interaction it is necessary to take account 
of compressibility in the interior domain, the boundary condition (14) is valid, while for 
a weak interaction the gas compressibility is not essential and the Nikol'skii's condition 
is valid in a first approximation. To obtain the second approximation needed for �9 << s << i 
it is necessary to use condition (ii), to solve the linear problem on evolution of a free 
boundary in the near-wall layer for s = o(T), and to solve the nonlinear problem on free 
boundary evolution for e = O(T).* 

�9 The numerical solution of such a problem in combination with the problem of the flow around 
a profile is an extremely difficult problem at the present time. 
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In the last two cases the free surface does not emerge from the elongated zone, the 
boundary condition (I0) is substantially an integral taking account of the effect of "memory" 
on the slot geometry and on the separation nature of their flow up to the section z I = const, 
which is a consequence of the fact that the Cauchy problem [18] is valid for the inner expan- 
sion. This, in principle, is the difference between the mechanism of gas interaction with 
longitudinally slotted boundaries and the mechanism of gas interaction with transversely 
slotted or perforations. 

Each of the four expansions proposed and their corresponding boundary conditions has 
its advantages and disadvantages. Each of them turns out to be most effective, can only be 
clarified because of extensive experimental and calculational exploitation. 

The author is grateful to G. G. Sudakov and D. M. Romanov for fruitful discussion of 
the topic. 
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